Rearranging Digits – Analytic Solutions

Posted on September 22, 2016

In this post we will work through some digit rearrangement problems.
1. Six-Digit Numbers: The 6-digit number $ABCDEF$ is exactly $23/76$ times the number $BCDEFA$ (where $A$, $B$, $C$, $D$, $E$, and $F$ represent single-digit non-negative integers and $A,B>0$). What is $ABCDEF?$
2. Arithmetic Progression: Find all ordered pairs of distinct single-digit positive integers $(A,B,C)$ such that the three 3-digit positive integers $ABC$, $BCA$, and $CAB$ form an arithmetic progression.
3. Geometric Progression: Find all ordered pairs of distinct single-digit positive integers $(A,B,C)$ such that the three 3-digit positive integers $ABC$, $BCA$, and $CAB$ form a geometric progression.

This post will include analytic solutions, a future post will show some code-based solutions.

Six-Digit Numbers

Let's attack the first problem, repeated for clarity:

The 6-digit number $ABCDEF$ is exactly $23/76$ times the number $BCDEFA$ (where $A$, $B$, $C$, $D$, $E$, and $F$ represent single-digit non-negative integers and $A,B>0$). What is $ABCDEF?$

We will let $x=BCDEF$ be a five-digit number. Then

\begin{eqnarray*} ABCDEF &=& \frac{23}{76}\cdot BCDEFA \\ 100000\cdot A+x &=& \frac{23}{76} (10\cdot x+A) \\ 7600000\cdot A+76\cdot x &=& 230\cdot x+23\cdot A \\ 7600000\cdot A+76\cdot x &=& 230\cdot x+23\cdot A \\ 7599977\cdot A &=& 154\cdot x \\ 98701\cdot A &=& 2\cdot x \end{eqnarray*}

Remember, $x$ is a five-digit integer and $A$ is a one-digit number, so one such solution is $A=2$ and $x=98701$. Are there other solutions though? Well, $A$ must be even for $x$ to be an integer, but if $A>2$ then $x$ would be a six-digit number. So there is just the one solution. As a check, this makes our numbers $ABCDEF=298701$ and $BCDEFA=987012$.

(Side note: if you are wondering where these seemingly random six-digit numbers came from, check out the repeating decimals $\frac{23}{77}$ and $\frac{76}{77}$. Fractions whose denominators are factors of $999,999$ will create repeating decimals with cycles of six digits or less and quite often use the same digits in different order.

Arithmetic Progression

Now let's look at the second problem, repeated for clarity: Find all ordered pairs of distinct single-digit positive integers $(A,B,C)$ such that the three 3-digit positive integers $ABC$, $BCA$, and $CAB$ form an arithmetic progression.

We will approach this the same way, let's define the 3 numbers \begin{eqnarray*} N_1&=&100A+10B+C \\ N_2&=&100B+10C+A \\ N_3&=&100C+10A+B \end{eqnarray*}

These terms are in arithmetic progression, which can be exploited. Let the common difference of this sequence be $d$, then \begin{eqnarray*} N_2-N_1&=& 100B+10C+A-(100A+10B+C)=d\\ N_3-N_2&=& 100C+10A+B-(100B+10C+A)= d\\ N_3-N_1&=& 100C+10A+B -(100A+10B+C)= 2d \end{eqnarray*}

After simplifying, we have \begin{eqnarray*} -99A +90B +~9C - d=0\\ ~9A -99B +90C - d =0\\ -90A ~-9B +99C - 2d =0 \end{eqnarray*}

We have a system with three equations and four unknowns, which should make you a little anxious (and the third equation is just the sum of the first two). However, if we simplify a little bit (one could do this by hand, but rref in MATLAB is our friend)

Using rref on the coefficient matrix gives us

1  0  -1  0.021021
0  1  -1  0.012012
0  0   0         0

We need integer solutions, so where do we go from here? Take a look at the two decimals, $0.\overline{021}$ and $0.\overline{012}$. The fraction equivalents are $\displaystyle\frac{7}{333}$ and $\displaystyle\frac{4}{333}$ respectively.

The equations are then \begin{eqnarray*} a-c+\frac{7}{333}d=0 \\ b-c+\frac{4}{333}d=0 \end{eqnarray*}

So if we need integers, let's get rid of the fraction by letting $d=333$. Then we have $a-c=-7$, and $b-c=-4$. This gives us the solutions $(a,b,c)=(1,4,8)$ and $(2,5,9)$. Did we get them all though? We can also let $d=-333$, which yields $a-c=7$, and $b-c=4$. This gives us the solutions $(a,b,c)=(8,5,1)$ and $(9,6,2)$.

We could try multiples of $333$ as well, but will quickly run into trouble. If $d=666$, then $a-c=14$, and $b-c=8$ but $a$ and $c$ must be single digit numbers and larger values of $d$ will violate this. We can also let $d=0$ but that just gives us the trivial solutions of an arithmetic progression with common difference $0$.

Therefore our four solutions are \begin{eqnarray*} 148,~481,~814 \\ 185,~518,~851 \\ 259,~592,~925 \\ 296,~629,~962 \\ \end{eqnarray*}

If you are wondering if these numbers came out of nowhere, check out the decimal equivalents of the $27$ths. It is no coincidence that $\displaystyle\frac{4}{27}=0.\overline{148}$, $\displaystyle\frac{13}{27}=0.\overline{481}$, and $\displaystyle\frac{22}{27}=0.\overline{814}$.

Geometric Progression

Now let's look at the last problem, again repeated for clarity: Find all ordered pairs of distinct single-digit positive integers $(A,B,C)$ such that the three 3-digit positive integers $ABC$, $BCA$, and $CAB$ form a geometric progression.

For the geomtric sequence \begin{eqnarray*} N_2-r\cdot N_1&=& 100B+10C+A-r(100A+10B+C)= 0\\ N_3-r\cdot N_2&=& 100C+10A+B-r(100B+10C+A)= 0 \end{eqnarray*}

There are other manipulations, but I haven't found any that are linearly independent of the two equations shown.

Not only do we have two equations and four unknowns, the equations are non-linear. With some simplification, we have \begin{eqnarray*} 100B+10C+A-r(100A+10B+C)= 0\\ 100C+10A+B-r(100B+10C+A)= 0 \end{eqnarray*}

Using the symbolic toolbox and rref we can simplify

% a  b                          c
[ 1, 0,     (r - 10)/(10*r^2 - 1)]
[ 0, 1, (r*(r - 10))/(10*r^2 - 1)]


Not incredibly helpful. However, we can reverse the columns of the array (now instead of A,B,C we have C,B,A) and rref gives us

% c  b                      a
[ 1, 0, (10*r^2 - 1)/(r - 10)]
[ 0, 1,                    -r]


Which is a little cleaner. So where do we go from here? Well, from the last equation we have $b-ra=0 \rightarrow r=b/a$ from the second equation. So we could just try every $(a,b)$ combination ($72$ since $a\neq b$) and see if $$c=\displaystyle\frac{10r^2 - 1}{10 - r}a$$ is an integer. Still some brute force required though. You could also substitute $r=b/a$ into $c=\displaystyle\frac{10r^2 - 1}{10 - r}a$ yielding $$c= \displaystyle\frac{10b^2-a^2}{10a - b}$$ which we just have to ensure is an integer. But again, it looks like guessing and checking is required. You could even simplify further with some polynomial division $$c = \displaystyle\frac{10b^2-a^2}{10a - b} = \displaystyle\frac{999a^2}{10a - b} - 10b - 100a$$ which takes you down a path of finding $a$ and $b$ such that $10a - b$ is a divisor of $999a^2$, but that may even be more dangerous than guess and checking since it's so easy to leave out a case and every case must be checked to ensure $c$ is a positive single digit integer.

You can though, and it will lead you to two ordered triples, $(a,b,c)=(4,3,2)$ and $(8,6,4)$ (the second is just a less exciting multiple of the first, both have the common ratio $r=\frac{3}{4}$. The geometric series are $432,~324,~243$ and $864,~648,~486$.

This last solution left me feeling less than satisfied. In the next post we will do a code-based solution to ensure with some certainty that those are the only values.

Some text some message..